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The normal force exerted by creeping flow on a small 
sphere touching a plane 
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Department of Chemical Engineering, University of California, Berkeley 

(Received 7 July 1969) 

The hydrodynamic force experienced by a small solid sphere of radius up resting 
on a solid plane wall in axisymmetric stagnation flow, v, = Q( -+‘is + zDi;), or 
in planar stagnation flow, v, = !2( - x2iz+ 2 2 4 ) ,  is computed on the basis of 
Stokes’ creeping flow equations. In both cases, as well as for any flow whose x 
component of velocity is - Qz2, this force is found to be F, = - 60-87pQai, 
where p is the viscosity of the fluid. The uniform flow parallel to the line of 
centres of two touching spheres of arbitrary radii is also solved. 

Introduction 
In the theory of particle capture by filtration or scrubbing one must know the 

hydrodynamic forces exerted on particles suspended in the flow near collectors. 
In  many practical cases the suspended particles are much smaller than the 
collectors; it is then a good approximation to assume that the flow field past the 
collectors is undisturbed by the particles except in the latters’ immediate vicinity 
and that at  separations greater than several particle diameters particle centres 
move along undisturbed fluid streamlines. Within several particle diameters, 
however, hydrodynamic interactions become increasingly important and the 
approximation that particle centres move along undisturbed fluid streamlines 
is no longer valid. In  deriving an expression for the efficiency of particle capture 
by hydrodynamic and London-van der Waals forces (Spielman & Goren 1970) 
it is most important to estimate the hydrodynamic force of attraction for very 
small gaps. In this article we calculate the limiting hydrodynamic force attained 
when the particle and collector touch and the flow at infinity is along their line 
of centres. The particle is assumed to be so small compared to the collector that 
the latter can be treated as a plane except in so far as its size and shape determine 
the flow field far from the particle. For spherical collectors the flow far from the 
particle is taken to be axisymmetric stagnation flow, 

v, = a( -z2iz+xOiQ), 

whereas for cylindrical collectors the flow is planar stagnation flow, 

v, = Q( - 9iZ + 2294). 

The parameter f2 is determined by the flow model, i.e. whether the collector 
can be considered isolated or whether the flow past a given collector is influenced 
by neighbouring collectors. For example, for cylindrical collectors of radius up, 
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C2 = 2A,. Ua,', where U is the uniform velocity a t  infinity pa,rallel to the line of 
centres; using Lamb's solution for isolated cylinders, A ,  = &{2 - In (Zpa, U/,u)}-l 
whereas in fibrous mats of porosity e, A ,  z a( 1 - e)-&. For spherical collectors 
of radius a,, 

The creeping motion past two spheres of arbitrary sizes and spacing has been 
solved exactly by Stimson & Jeffery (1926) using bispherical co-ordinates. The 
stream function is given as an infinite series involving Gegenbauer polynomials. 
This series breaks down as the spheres touch, but it should be possible to deter- 
mine the force on a given particle by an appropriate limiting procedure. Un- 
fortunately, the expressions given by Stimson & Jeffery are very cumbersome, 
except for the special case of equal spheres, and so it was thought better to 
approach the problem afresh using tangent-sphere co-ordinates. Similarly, the 
creeping flow past two touching spheres of arbitrary size can be solved exactly 
but the equations are again somewhat cumbersome. Accordingly we make the 
approximation at  the outset that the collector is so large compared to the particle 
that i t  can be treated as a solid plane wall. 

Another problem relevant to the capture of small particles by much larger 
collectors concerns the force and torque experienced by a sphere touching a 
plane solid wall in uniform shear flow. This has recently been treated exactly 
by O'Neill (1968) using tangent-sphere co-ordinates and by Goldman, Cox & 
Brenner (1967) who extrapolated results obtained with bispherical co-ordinates 
to zero gap thickness. 

= #AsUa;'; using Stokes' solution for isolated spheres, A,  = 1. 

Sphere in axisymmetric stagnation flow 
The flow field far from the sphere is taken to be axisymmetric stagnation flow: 

It is convenient to adopt tangent-sphere co-ordinates (5, 7, e)  which are related 
to cylindrical co-ordinates (z,  6, 0) by the equations 

= 5(7' + k2)-l ,  
Q = 7/(7'+!$2)-1, 

e = e. 
The surface 5 = constant is a sphere of radius 1251 -l centred at  z = 46-1 and thus 
touches the x, y plane at  the origin; 5 = 0 is the x, y plane. The surface r,~ = con- 
stant is a torus formed by rotating a circle of radius 97-l centred at Q = 47-1 about 
the z axis; 7 = 0 is the z axis. The surface 8 = constant is a plane containing the 
z axis. (6 ,  7, 0) are orthogonal curvilinear co-ordinates with scale factors 

hs = h, = h = (y2+c2). (3) 
Note that r2 = G 2 + z 2  = (r2+E2)-l so that infinitely far from the particle both 
7 and 6 simultaneously approach zero. 

In  terms of the new co-ordinates, the stream function at  infinity is 

$m = $szq'lp(q2+ 57-4.  (4) 
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The stream function $ is written as 

+(7, t )  = +rn(y, 6) + $(7, t) ( 5 )  

and must satisfy the equation of creeping motion for axisymmetric flow (Happel 
& Brenner 1965) 

E2E2+ = 0, 

Since $rn itself satisfies (6) the equation of motion becomes 

E ~ E ~ I $  = 0. (8) 

The boundary conditions are no-slip on the solid plane t = 0 and the solid 
sphere t = K = (2up)-1: 

on 6 = 0, $ = 0, :. $ = -+m = 0; (9) 

In order that the disturbance due to the presence of the sphere vanish at infinity 
we also require 

$(O,  0) = 0. (13) 

Since h-28-2 = q2 is of the form P(7)  + Q([), E2f = 0 has a solution of the form 
f = 6-*U(y)  V(E) (see Happel & Brenner 1965). Substitution into (7) shows f is of 
the form 

where J1 is the Bessel function of the fist kind and order unity. In  order that the 
velocity remain finite along the z axis a similar term involving Y,(h7) has been 
omitted. It is easy to show that iff satisfies E2F = 0, then E2E2(zf) = 0. Thus the 
solution to (8) is a term of the form (14) plus 6(y2+t2)-1 times a similar term. 
Using the differential equation satisfied by J,(hy) and two integrations by parts, 
we may write 

where 

(15) 

F(t) = A(h)  cosh ht+B(h) sinh hE+C(h)ht cosh ht+D(h)hE sinh A t .  

Application of (9) and 10) yields 

(16) 
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Application of (1 1) and (12) yields 

- $yQ2K2(p+K2)- -q = A y J l ( A y ) F ( K ) d h ,  ( 1 9 )  

Inverting these Hankel transforms with the aid of formulas given in Edelyi 
et al. (1954, chapter VIII)  gives 

F(K) = lom y ~ , ( ~ y )  { - $~yK2(y2+ K2)-i}dy = - i f i A K e - A K  (21 1 

(22) or C{AK cosh AK - sinh AK} + DAK sinh AK = - & QAKe-AK 

or 

Solving (22) and (24) for the functions C and D gives 

C A 2 ~ 2  sinh AK + D{AK sinh AK + A 2 ~ 2  cosh AK} = &QAK(AK - 1) e-AK. (24) 

and 

QA2K2 

6{sinh2 AK - A 2 ~ q  C =  

Q{AK(AK - 1) + ecAK sinh AK) 
6{sinh2 AK - A 2 ~ 2 }  

D = -  

(25) 

Thus the stream function is completely specified. 
To determine the net force in the z direction on an axisymmetric body we use 

the formula derived by Stimson & Jeffery (1926) and Happel & Brenner (1965), 

where n and s are the normal and tangential co-ordinates to the surface. Here 
a/an = ha/aE and as = h-ldy.  It is tedious to apply this formula on the surface 
of the sphere = K .  However, by a steady-state momentum balance on a ‘large 
cylinder’ of fluid bounded on the bottom by the plane wall and sphere it is 
possible to show from the behaviour of + for small [ and y that the force acting 
on the sphere is equal to minus the net force due t o  the disturbance flow $ acting 
on the solid plane 6 = 0. Thus 

(28) 
q = -..som [93z(T)]E=0dy. a E2$ 

Carrying out the indicated operations gives 

4 = - ..J-om lom AyJ1(Ay) P”’(0) dh dy 

m 

The integral was evaluated numerically, the result being 

q = - 60.87pQai. 
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Sphere in planar stagnation flow 

from the particle is taken to be planar stagnation flow 

As before, on thewall (g = 0) and sphere surface (( = K = ( 2 ~ ~ ) - l )  the fluidvelocity 
vanishes. Because the flow field a t  infinity is not axisymmetric it is difficult to 
solve this three-dimensional problem. Nevertheless it is clear from the symmetry 
that the net force on $he sphere will be in the z direction. Let this force be F,. 

For a spherical particle captured by a much larger cylinder the flow field far 

v, = Q{ - z2i2 + 2zzi,}. (31) 

The planar stagnation flow field 

v, = Q{ - 22iz + 2zyi,), 132) 
with no slip on the plane and sphere, must produce the same net force on the 
sphere Fz. Since the equation of motion and boundary conditions are linear, the 
sum of the solutions due to (31) and (32) will also be a solution to the equations 
of motion and will result in the force 2F2. For the sum, the flow field at  infinity is 

v, = 2Q{ - z2iz + mi, + zyi,} = 2Q{ - z2i2 + x8iG}. (33) 
With this flow at infinity and no slip on the plane and sphere we have exactly 
the same problem treated in the preceding section. Thus, 

$ = - 60-87pQa~.  (34) 
111 fact, if the undisturbed velocity far from the sphere is given by 

u(x,  y, z )  i + v(z, y, z )  j - Qz2k 
(the last term being so determined to second order in x, y and z by the no-slip 
and continuity conditions) the normal component of the force is given correctly 
by (34) for arbitrary u and v. The reason for this is that to the creeping flow 
approximation the force caused by any flow reverses sign when the direction of 
flow is reversed, and since the normal component of the force must be independent 
ofthe direction of u or v these flows can contribute no net normal force. When the 
z component of velocity is other than - Qz2, however, a different normal force 
results. 

Uniform flow past two touching spheres of arbitrary sizes 
For completeness, we give here the solution for fluid moving with uniform 

velocity U at infinity parallel to the line of centres of two touching spheres of 
arbitrary radii. Now the stream function at  infinity is 

Again $ = e m + $  

with $? given by (15) and (16). Applying the no-slip boundary conditions 

?fkm = +U@ = g h / y + [ 2 ) - - 2 .  (35) 

and 
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and inverting the resulting Hankel transforms gives the following four linear 
algebraic equations for the functions A ,  B, C and D : 

A cosh AK + B sinh AK + CAK cosh AK + DAK sinh AK = - U(  1 + AK) ecAK/2h2; 

A Gosh As - B sinh As - CAs cosh As + Dhe sinh As = - V(  1 + As) ecAC/2e2; 

AAK sinh AK + BAK cosh AK + C [ ~ K  cosh AK + h 2 ~ 2  sinh AK] 

+ D [ h K  sinh h K  + h2K2 cash h K ]  = &UK2e-AK;  

Ahs sinh As - Bha cosh As - C[Aa cosh he + A2s2 sinh As] 

+ D[Ae sinh As + A2s2 cosh ha] = 4 Us2 e-As. (37) 

The forces on the two spheres may be computed with the aid of (27). Again it 
is more convenient to apply this formula to a large cylinder of fluid bounded on 
the bottom by the plane [ = 0. After a great deal of manipulation, the result 
simplifies to 

and 

F, (particle a,) = 2n-,u J o-  A2(A + B)  dA,\ 

The force on the aggregate is 
P m  

&(aggregate) = 47rpJ A2AdA,  
0 

(39) 

which may easily be seen to be in agreement with the result obtained from the 
relation 

Equations (37) were solved for A and B and the forces on the two particles 
then computed for selected values of the parameter R = aJa, by numerically 
carrying out the integrations indicated in (38). The results may be expressed in 
the form 

q(partic1e up) = 67rpUa, I(R) (41) 

with !(A) given in the accompanying table. 

R 
1.00 
0-50 
0.25 
0.10 
0.05 

R - t O  

!(R) R &(R) 
0.645 1.0 0.645 
0.365 2.0 0.866 
0.155 4.0 0.965 
0.0364 10.0 0.997 
0.0105 20.0 1.000 
4-844R2 co 1.000 

For up 9 a, the sphere of radius a, has a very minor effect and the force on the 
sphere of radius ap approaches that given by Stokes for an isolated sphere. For 
a, < as, t (R) may be estimated from the formula 1 = 4.844R2 obtained from the 
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results for axisymmetric stagnation flow with SZ = #Ua;2. The numerical result 
for R = 1 is in excellent agreement with the calculations of Faxen and Dahl for 
equal spheres reported by Happel & Brenner (1965). 

This work was supported in part by a grant from the National Center for 
Air Pollution Control, Public Health Service, AP 00670. 
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